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Exploring a simple dataset

Suppose we measure a single quantity of interest (the simplest possible dataset!): the brain
volume of human adults. How do we explore these data?

We can create a visual summary of our dataset with a histogram. A histogram plots the
distribution of a set of data, which allows us to get a quick visual of the data: formally we
have plotted the the frequency distribution (count) of the data, but this also gives a sense of
the central tendency and variability in our dataset.

We can summarize (or describe) a set of data with summary statistics (aka descriptive
statistics). There are three summary stats we typically use:

o central tendency describes a central or typical value (mean, median, mode)
« variability describes dispersion or spread of values (variance, standard deviation, range,
IQR)

o frequency distribution describes how frequently different values occur (count)

R has built-in functions to handle descriptive statistics (we saw these in lecture 1):

data %>%
summarise (
n = n(Q),
mean = mean(volume),
median = median(volume),
sd = sd(volume),
igr_lower = quantile(volume, 0.25),



iqr_upper = quantile(volume, 0.75)

Some statistics are considered parametric because they make assumptions about the the
distribution of the data (can therefore be computed theoretically from parameters). The
mean and standard deviation assume the distribution is Gaussian (aka “normal”) and can
therefore be computed via the following equations:

Other statistics are non-parametric because they make minimal assumptions about the
distribution of the data:

« median is the 50th percentile, the value below which 50% of the data points fall.

 inter-quartile range (IQR) is the difference between the 25th and 75th percentiles
(sometimes called the 50% coverage interval because 50% of the data fall in this
range).

« Note that we can calculate any arbitrary coverage interval. The 95% coverage interval
— widely used in the sciences — is the difference between the 2.5 percentile and the 97.5
percentile, including all but 5% of the data.

Probability distributions

A probability distribution (aka “probability density function (PDF)”) is a mathematical
function that describes the probability of observing the different possible values of a variable
(or variables!)

One of the simplest probability distributions is the uniform distribution, where all possi-
ble values of a variable are equally likely. The probability density function for the uniform
distribution is given by the following equation with two parameters (the boundaries, min and
max):
_ 1
¢ p(l’) ~ mazx—min

One of the most useful probability distributions for our purposes is the Gaussian (or Nor-
mal) distribution. The probability density function for the Gaussian distribution is given
by the following equation, with the parameters p (mean) and o (standard deviation):

« pl) = = exp (—3 (54)%)




e The Gaussian distribution assumes that the distribution of a set of data takes a certain
form (is unimodal, symmetric, etc).

o When values are sampled from a Gaussian distribution, 68% of the values will be within
one standard deviation from the mean and 95% within two standard deviations from the
mean.

e When computing the mean and standard deviation of a set of data, we are fitting a
Gaussian distribution to the data.

The probability distributions we’ve discussed so far are considered “parametric” because they
are given by one or more parameters. Base R has four useful functions we will use to work
with probability distribution.

e dnorm(n, mean=5, sd=1) returns the height of the probability density function at
the given values

o pnorm(5, mean=5, sd=1) returns the cumulative density function (the probability
that a random number from the distribution will be less than the given values)

e gnorm(0.8, mean=5, sd=1) returns the value whose cumulative distribution matches
the probability (inverse of p)

e rnorm(1000, mean=5, sd=1) returns n random numbers generated from the distri-
bution

To use another distribution, change the function’s suffix to the name of the distribution and the
parameters to those that define the distribution. For example, to generate n random numbers
from a uniform distribution with a min of 1 and a max of 5, run runif (n, min=0, max=1)

What if the data does not meet the assumptions of the Gaussian distribution? One option is to
choose another parametric probability distribution (run help(Distributions) for a full list
of available distributions). Another is to use a nonparametric approach, where the probability
distribution is not determined by parameters but is instead determined by the data.

Sampling distribution

When measuring some quantity we are usually interested in knowing something about the
population (the height of human adults, for example). But in practice we can only observe
a small sample of the entire population.

o Any statistic we compute from a random sample we’ve collected (technically known as the
parameter estimate) will be subject to sampling variability and will differ from that
statistic computed on the entire population (technically known as the parameter). In
other words, our measurements are noisy, and we need a way to express our uncertainty
on the statistic we’ve computed. Quantifying this sampling variability is an important
component of statistical inference.



e The sampling distribution is the probability distribution of the values our parameter
estimate can take on. We can construct the sampling distribution by taking a random
sample, computing the statistic of interest, and repeating this process many times. The
spread of these results indicates how the parameter estimate will vary from different
random samples.

o We can quantify the spread of our results (AKA express our uncertainty on our parameter
estimate) using a parametric approach, by computing the standard deviation of our
sampling distribution (called standard error!), or using a nonparametric approach, by
constructing a confidence interval.

The standard deviation of the sampling distribution is known as the standard error. When
the statistic of interest is the mean, the standard error is given by the following equation,
where o is the standard deviation of the population and n is the sample size: ﬁ

¢ In practice, the standard deviation of the population is unknown, so we use the standard
deviation of the sample as an estimate. That is why we use n — 1 in our mean square
calculation. We assume our sample standard deviation is probably underestimating the
population, so we “correct” this by dividing by n — 1 instead of n.

e Standard error is considered parametric because we assume a parametric probability
distribution (Gaussian) and compute the standard error based on what happens theoret-
ically when we sample that distribution.

e clt? sample size relationship.

We can also quantify the sampling variability with a confidence interval, which expresses
our uncertainty on our parameter estimate via a coverage interval. We can construct any
confidence interval, but in science the convention is to choose the 95% coverage interval.

e Recall from last lecture that a coverage interval is a nonparametric statistic. The 95%
coverage interval are the values between which 95% of the data points fall (the difference
between the 2.5 percentile and the 97.5 percentile in our sampling distribution).

o Confidence intervals are closely related to standard error: assuming the sampling dis-
tribution is Gaussian (the parametric approach), the 68% confidence interval is +/- 1
standard error and the 95% confidence interval is 4 /- 2 standard error.

Bootstrapping

Ideally, we would construct the sampling distribution by repeating our experiment many times,
drawing new random samples from the population each time. But in practice, this is impossible.
We are usually constrained — by time, money, access, etc. — such that we can only take one
sample.

e This is no problem if we can assume the underlying population distribution is Gaussian:
we can just compute the standard error, which relies on the sample standard deviation,



to approximate what would happen if we had sampled from a Gaussian probability
distribution (see above!).

e What if the underlying distribution is not Gaussian, or we want to drop these parametric

assumptions (i.e., the assumption that our distribution is well-characterized by mean and
standard deviation)? We can use a technique called bootstrapping.

With bootstrapping, instead of assuming a parametric probability distribution, we can use
the data themselves to approximate the underlying probability distribution. In other words,
instead of sampling from the population, we can sample our sample! We're “pulling ourselves
up by our bootstraps”: constructing the sampling distribution from our own data.

The procedure is very simple. To illustrate, suppose we have a set a data with 100 data
points. We generate the bootstrap sampling distribution by drawing the same number
of data points (100) with replacement from our data set and compute the parameter
estimate — mean, median, whatever — on those points, then we repeat the process
many times.

However, there is “no free lunch”. Bootstrapping still relies on the (weaker) assumption
that your sample is a representative sample of the population. If your sample was not
representative, then bootstrapping will not help you estimate the parameters any better.
Garbage in, garbage out!

There are many ways to generate a bootstrap sampling distribution in R. We will use the
infer package in this class, which was developed by Hadley Wickham (the tidyverse guy!)
and others to simplify aspects of statistical inference in R.

specify(response=x): choose which variable is the focus of our inference
generate(reps=n, type="bootstrap"): generate n replicates of the data
calculate(stat="mean"): statistic to calculate on each sample; what parameter are
you trying to estimate?

We can further use infer to visualize the bootstrap sampling distribution and get a confidence
interval around the parameter we estimated.

visualize(): quick visualization of the distribution
get_confidence_interval(level=0.95, type="percentile"): computes the confi-
dence interval

shade_ci(endpoints=c(min, max)): shades the visualization with the computed con-
fidence interval

Further Reading

Suggested further reading:

Basics of descriptive statistics in Statistics for linguists


https://en.wikipedia.org/wiki/No_free_lunch_theorem
https://infer.netlify.app/
https://dlf.uzh.ch/openbooks/statisticsforlinguists/chapter/basics-of-descriptive-statistics/

Appendix A: Statistical Background in Modern Dive

Ch 7 Sampling in Modern Dive

Ch 8 Bootstrapping and Confidence Intervals in Modern Dive
Infer package introductory vignette

Ch 11: Modeling Randomness in Statistical Modeling


https://moderndive.com/A-appendixA.html
https://moderndive.com/7-sampling.html
https://moderndive.com/8-confidence-intervals.html
https://infer.netlify.app/articles/infer
https://dtkaplan.github.io/SM2-bookdown/modeling-randomness.html
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